


About Me

• Senior Security Consultant in 
NCC Group Hardware & 
Embedded Systems practice

• Learned RE for fun from fravia’s
Windows cracking & related 
sites like 3564020356

• Reversing retro games for fun, 
some nostalgia factor, no need 
to worry about NDAs/clients



Overview

• Reversing Pokémon Snap

• General highlights/challenges of 
the RE process

• Challenges from not having the 
kiosk hardware

• Joy Bus interface tool with 
iCEBreaker FPGA board

• Key things I stumbled on to go 
from WTFPGA/iCEBreaker FPGA 
Workshop tutorials or simple 
glitcher design to interfacing 
with an external bus





• Released in July 1999

• First 3D Pokémon game 
(outside Japan)

• Rail shooter style 
photography game

• Basically, a safari to take 
photos of Pokémon

http://www.thecoverproject.net/view.php?game_id=575

Pokémon Snap



https://www.serebii.net/snap/ and https://assets.pokemon.com/assets/cms/img/video-games/snap/screenshots/Snap_ss9.jpg

https://www.serebii.net/snap/




James Artaius
https://www.digitalcameraworld.com/tutorials/how-to-print-instax-photos-from-your-nintendo-switch-
including-pokemon-snap





YouTube: PokeRev https://youtu.be/tgOHRTbfxK0



YouTube: PokeRev https://youtu.be/tgOHRTbfxK0



Reverse Engineering



YouTube: PokeRev https://youtu.be/tgOHRTbfxK0



If you like these pictures, please

make sure a print credit exists

then press \a to print.













Static Analysis

• Difficulty finding relevant code to reverse

• Without working flow based disassembly, very little code is identified, 
almost no cross-references to data

• Code moves around soon after the game boots

• Probably overlays; making it very difficult to interpret stripped 
assembly
• Found some references to overlay reversing by LuigiBlood later on, and 

overlay docs in the N64 SDK

• Hard to build any context up to understand what’s happening

• ROM is also full of all the textures, models, music, etc. assets



Dynamic Analysis

• Instead of painstaking work to get a nice disassembly I switch to 
dynamic analysis in emulator or with console

• Issues with emulation:
• Photography feature (detecting Pokémon) must be directly linked to 

rendering, only worked with low-level graphics emulation plugin (slower)
• Discovered later that the expansion pak (adds 4 MB to console’s main RAM) is 

necessary for the print display, it just crashes without that
• Breakpoints on PIF RAM/controller state in the emulator trigger too often

• Issue with console:
• No real kiosk hardware to use for analysis…
• But I do have the retail game and N64



Interfacing with FPGA





https://sites.google.com/site/consoleprotocols/home/nintendo-joy-bus-documentation



Zero
1 microsecond

4 microseconds



Zero
1 microsecond

4 microseconds



Basic controller functionality

• Console commands consist of a one byte command ID followed by 
optional data bytes, such as a 16-bit read address for the Controller 
Pak read command

• Started by implementing the two basic commands needed to 
simulate a regular N64 controller:

• Device type and status query: FF or 00

• Check current state of buttons and analog stick: 01



https://youtu.be/LN5hrpZ2cGI

https://youtu.be/LN5hrpZ2cGI


Sniffing the Joy Bus

• Forward request data to laptop over UART

• Look at hex dump of the requests

• When changing the controller status response to report that an 
accessory is plugged into the controller…

“Write fefefefe…to address 0x8000”

03_8001_fefefefefefefefefefefefe…fefefefefe



Emulator Dynamic Analysis



Dynamic Analysis

• Trying read/write breakpoints on the controller state was too spammy

• Quick & dirty solution: Using Cheat Engine style dynamic analysis of 
the menu to find the conditional code

• Assume Print code is present in the Gallery menu, just disabled…

• Looked at button/UI handling in the Gallery



https://youtu.be/wEkuBEvZRYo

https://youtu.be/wEkuBEvZRYo


https://youtu.be/hoyehQNMeEs

https://youtu.be/hoyehQNMeEs


Dynamic Analysis

• After identifying a bit of code that way, can leverage the static 
analysis in a disassembler again

• Searched byte string of a chunk of the currently active code to find it 
in disassembly

• Repeated that process many times to identify individual functions



Dynamic Analysis

• Look at how button handler code maps button ID to an action

• Examine conditional stuff around here, where menu text is loaded 
from to try to get the "Print" string

• Finally found suspect global variable checked for a simple constant 
value to enable/disable certain menu entry, for the Print button

• Look into how that global flag is set (used write breakpoint)

• Found the 0x85 sequence…
• Didn’t know it yet, but this is how the console checks for a peripheral plugged 

into the controller like a Rumble Pak or Transfer Pak





https://youtu.be/Vsc8uSd5bmU

https://youtu.be/Vsc8uSd5bmU


https://youtu.be/OaWFcY0V4q8

https://youtu.be/OaWFcY0V4q8




Sniffing the Joy Bus 2

• Return “85” sequence 
(peripheral ID) to console when 
it tries to identify what’s plugged 
in to the controller

• When print is enabled, pressing 
the “Print” button or booting 
the game causes some requests 
to be sent to the peripheral

• Logged traffic with UART again



Snap Station Protocol: Gallery menu

• Read from 0xC000 (just returned 00s…)

• Write to 0xC000: 00 00 … 00 CC

• Read back 0xC000

• Write to 0xC000: 00 00 ... 00 33

• Read back 0xC000

• Write to 0xC000: 00 00 … 00 5A

• Read back 0xC000

• CC/33 surround the saving process, 5A means ready to reset

Error message if save fails between CC/33



Snap Station Protocol: Photo display

• Write 01 to 0xC000 and read back
• Write 02 to 0xC000 and read back (16 times)
• Write 04 to 0xC000 and read back

• Note 16 photos are displayed…
• 01 – start
• 02 – displaying photo
• 04 – end

• Responding with 08 at any point triggers busy loop for syncing



https://youtu.be/krxyoXIhFw8

https://youtu.be/krxyoXIhFw8


YouTube: Leonhart https://youtu.be/lCnvpIEVpqo



FPGA / Hardware Tips



Tips: Metastability

https://www.nandland.com/articles/metastability-in-an-fpga.html

Input changed during setup time (tsu),
output is metastable

Chain flip flops: second output is stable

https://www.nandland.com/articles/metastability-in-an-fpga.html


Tips: Memory inference

• Big difference between vector of 280 bits (reg [279:0] 
rx_bits) and 8-bit array (reg [7:0] rx_bytes [0:34] )
• Quickly run out of LUTs…

• Block RAM: dedicated RAM components, UP5K has 30 blocks of 512 
bytes
• https://projectf.io/posts/fpga-memory-types/

• UP5K has SPRAM blocks with 32 KiB capacity, exactly the amount of 
storage needed for N64 memory card
• Need to manually specify it with Yosys
• https://projectf.io/posts/spram-ice40-fpga/
• Using the SPI flash for persistent storage would also be nice

https://projectf.io/posts/fpga-memory-types/
https://projectf.io/posts/spram-ice40-fpga/


Tips: Open drain / open collector

• Signal on the bus by going to ground for 0, high impedance mode for 
1 (pull-up resistor will pull signal high)

• Set output register to z to enter high impedance state



Driving peripherals







Controller Pak



SHMOOCON

iCEBreaker design: https://github.com/jamchamb/cojiro

Project64 mod: https://github.com/jamchamb/project64/tree/snapstation

Blog post: https://jamchamb.net/2021/08/17/snap-station.html


