
Secrets of Animal Crossing
Adventures in ROM Hacking

James Chambers

Introduction

• Animal Crossing
• Released in 2002

• “Life simulator” game
• Interact with villagers

• Customize house, collect items

• Events and holidays happen in real
time, whether or not you’re
playing

Introduction

• Does N64 emulation (graphics,
some system properties) for
main game

• NES emulator for NES games you
can acquire in-world

Introduction

• Connects to Game Boy Advance
• Can transmit NES games to run on

Gameboy Advance

• E-Reader peripheral for collectible
cards that grant items, etc. (like an
early version of Amiibo)

• Unlocks game features

Introduction

• GameCube contains customized
PowerPC processor
• Extended instruction set

Introduction

• Halloween was approaching and
it’d be fun to make a spooky mod
• Lack of tutorials on doing

comprehensive ROM hacking
• I could make a tutorial in the style

that I learned RE/cracking from

• Goals for mod:
• Create a new holiday based event

• Targets:
• Dialogue system
• Event system
• Quest system

Looking Inside
File formats, symbols, IDA scripts

Looking Inside

• Open up the disc image:
• boot.dol
• foresta.rel.szs
• forest_1st.arc
• forest_2nd.arc
• famicom.arc
• statica.map
• foresta.map

• Lots of proprietary formats
• File format analysis will be important
• Some documentation on common

GameCube/Wii formats already exists

Looking Inside

• .ARC files: archives
• Contain most of the interesting data

files

• Some tools for opening ARC files
but not creating them (except
maybe sketchy EXEs)

• Found a Python extractor and
added archive creation to it
• Noticed why the other tools didn’t

support it
• It’d be nice to have some generic

tools for defining/analyzing binary
formats
• Kaitai and the other thing for game

archives

Looking Inside

• Binary files
• boot.dol
• foresta.rel

• Importing to IDA
• Custom PPC instructions

• “Paired singles are a unique part of the Gekko/Broadway
processors used in the Gamecube and Wii. They provide fast
vector math by keeping two single-precision floating point
numbers in a single floating point register, and doing math
across registers.”

• PPC Altivec IDA plugin:
https://github.com/nihilus/PPCAltivec

• Custom REL/DOL loaders
• https://github.com/heinermann/ida-

wii-loaders

• Kaitai definitions for debugging
loaders

Looking Inside

• The symbol map files
• GameCube build script options:
-map - create a

.MAP file that shows final memory

layout of all sections

• Make simple IDA script for
populating database with names

Reversing the Dialogue System

Reversing the Dialogue System

• Initial analysis

• Find the files that contain the
message strings
• *_data.bin and
*_data_table.bin files

Animation
plays

Speech
pauses

Reversing the Dialogue System

• Iteratively add codes
• Focus on what non-printable bytes

are left

• Basic editor
• Doesn’t have all the codes defined

• Doesn’t support writing special
codes back

• Good for analysis

• Use IDA to figure out the rest of
the special codes

Reversing the Dialogue System

• “ControlCursol” functions for each code handle reading the special
bytes and doing something with them

Double check it begins
with 0x7F 0x03

Extract pause amount from text buffer

Convert time integer to float

Return from
extracting pause

interval

Report size of the code

Save interval to
msg_window_t.

timer

Do stuff with
extracted data for

code

Reversing the Dialogue System

• Still don’t know where these cursor
controller functions are used
• Cross-references are a dead end

• Search for the function addresses as
raw bytes…
• They’re held in a function table
• Data type of the bytes wasn’t defined,

so the references didn’t show up

• Referenced by
mMsg_Main_Cursol_Proc_Contro
lCursol

• Performs the table lookup by code
• Referenced in turn by
mMsg_Main_Cursol_ControlCursol

mMsg_Main_Cursol_ControlCursol

Timing and cancel request
handling

Check data at cursor;
Print or handle proc code

Timing and talk animation/sound
handling

Reversing the Dialogue System

• GUI editor for string tables

• Translates special codes to
serialized text format, e.g.
{{PAUSE:0x03}}

• Handles special character set

• Note: Adding more entries to a
table requires generating a patch
• Highest entry ID is compiled in,

and used for bounds check

Unlocking Developer Features

Finding debug features

• Noticed a bunch of functions
and variables with “debug” in
the name

• Debug features would be useful
for testing out mods

• What does new_Debug_mode
do?

Finding debug features

• Called by entry (right after the
Nintendo logo splashscreen)

• Allocates a 0x1C94 byte
structure and saves the pointer
to it

• Value at offset 0xD4 is set to
zero right away

• What happens if it’s set to 1?

Finding debug features

• Looking for more code that
references the debug mode
structure…

• There are a bunch of references
to “zuru mode” in the context of
debug display behavior
• No idea what it is or what “zuru”

means (zulu?)

• zurumode_flag looks
important

Finding debug features

• Looked up functions with zurumode in the name:
• zurumode_init

• zurumode_callback

• zurumode_update

• zurumode_cleanup

zurumode_init

• Sets zurumode_flag to 0

• Checks some bits in a thing called
osAppNMIBuffer

• Stores pointer to zurumode_callback
in padmgr structure

• Calls zurumode_update

zurumode_update

• Checks some bits in osAppNMIBuffer.
• Conditionally update the value of
zurumode_flag based on the bits

• Prints a format string to OS debug console
• Characters are not ASCII, so I tried Japanese

encodings. It’s Shift-JIS:
• “zurumode_flagが %d から %d に変更されま
した”

• “zurumode_flag has been changed from %d to
%d”

• Doesn’t mean much yet, but knowing the
encoding helped with other debug strings and
untranslated game text

zurumode_callback

• Calls zerumode_check_keycheck first

• Checks a bunch of bits in osAppNMIBuffer

• Prints value of zuru mode flag

• Calls zurumode_update

…what’s zerumode_check_keycheck?

zerumode_check_keycheck

• Didn’t know what zuru mode was or
how crucial it was to debugging

• Tried getting translations of “zuru” or
slight changes in spelling through
Google Translate, got “shake”
• Thought this might refer to original Wii

remote, which was actually made for
Gamecube, or some other special kind of
developer input device

• Didn’t know if “key check” referred to
cryptographic key, controller buttons,
or keyboard keys

• Noticed missing/inconsistent symbols

• Held off and looked for path of least
resistance

Finding debug features

• Problem with the symbol loader
• First script parsed out address/name and added it
• Section addresses in foresta map all start from 0

• Resulted in symbols clobbering each other

• New scripts set up values for each section with:
• Name at correct address
• Function or data definition
• Segment named after the source object (e.g. m_player_lib.o)

• The new bss segment for m_debug_mode.o had some variables like
quest_draw_status and event_status.
• Cross-references from these data entries to a huge piece of code that checks
debug_print_flg (located in the same bss segment)

Finding debug features

• Approach in reverse
• Go from debug display behaviors back up to

debug mode activation

• Did some simple NOPping to bypass checks
and get displays to activate

• Found debug_print_flg and some status
variables related to it
• Set breakpoint where debug_print_flg is

checked. Never hits.
• Why? zurumode_flag gets checked first.

• zurumode_flag keeps showing up
throughout debug code and simple patches
get the various displays to activate
• No avoiding it any longer, I have to figure out

what zuru mode is

zurumode_init

• Returning to zurumode_init, it
initializes a few things:
• 0xC(padmgr_class) is set to the

address of zurumode_callback
• 0x4(zuruKeyCheck) is set to the

last bit of the 32-bit value at
0x3C(osAppNMIBuffer)

• Only runs once on game start
• Patching it to set
0x4(zuruKeyCheck) to 1
causes this text to appear on the
title screen
• But none of the other displays show

up during play

zurumode_update

• Checks the last bit of 0x3C(osAppNMIBuffer) and updates
zurumode_flag based on its value
• If it's zero, the flag is set to zero.
• If not, it extracts bit 28 from the NMI buffer value and adds 1 to it

• The result will always be 1 or 2. The flag is set to this value.
• When the result is 2 a bunch of interesting stuff shows up.

• Checks whether the flag has changed
• If so, it calls some functions from boot.dol:

manager = JC_JUTDbPrint_getManager()

if (flag == 0) {

JC_JUTAssertion_changeDevice(2)

JC_JUTDbPrint_setVisible(manager, 0)

} else if (BIT(nmiBuf+0x3c, 25) || BIT(nmiBuf+0x3c, 31)) {

JC_JUTAssertion_changeDevice(3)

JC_JUTDbPrint_setVisible(manager, 1)

}

zurumode_callback

• Runs each time the gamepad state updates

• Calls the crazy zerumode_check_keycheck function

• Checks and sets some bits in 0x3c(osAppNMIBuffer)

• Calls zurumode_update

• The last bit of the NMI buffer value is set if:
• bit 26 is set, or…

• bit 25 is set and controller 2 is plugged in, or…

• 0x4(zuruKeyCheck) is non-zero

• Otherwise, the bit is set to zero (disabling zuru mode)

Enables
zuru

mode

0x3C(osAppNMIBuffer)

Bit 26

?

0x4(zuruKeyCheck)

?

0x3C(osAppNMIBuffer)

Bit 25

?

Zuru Mode Activation

osAppNMIBuffer

• What is osAppNMIBuffer?

• Found it in N64 SDK docs
• “osAppNMIBuffer is a 64-byte

buffer that is cleared on a cold
reset. If the system reboots
because of a NMI, this buffer is
unchanged.”

• NMI refers to soft reset (via non-
maskable interrupt).

• Where do the bits get set?

osAppNMIBuffer

• Bits 25, 26, 28, and 31 of
0x3c(osAppNMIBuffer) control
zuru mode
• 25 and 26 control whether it’s

enabled
• 28 controls the flag level (1 or 2)

• A series of checks in the main
function of boot.dol set bits in
osAppNMIBuffer

• Large, somewhat complex function
• Look for OR instructions with 0x1,

0x8, 0x20, 0x40

boot.dol main function

Bit 26

• First up: there's an ori r0,

r0, 0x20 instruction
• Applied to the buffer value at 0x3c

• Sets bit 26, which always results in
zuru mode being enabled.

• To reach this block, the eighth
byte of the disk ID must be 0x99
• Try a simple patch for it in

emulator…

0x3C(osAppNMIBuffer)

Bit 26

?

0x4(zuruKeyCheck)

?

0x3C(osAppNMIBuffer)

Bit 25

?

Zuru Mode Activation

0x3C(osAppNMIBuffer)

Bit 26

Game disk ID is 0x99

Instant unlock

Bit 25 and 28

• Bits 25 and 28 get set if the disk
ID is greater than 0x90

• Bit 28 controls zuru mode level
(1 or 2)

• Bit 25 was associated with that
controller connection check…

Bit 25

• One of the conditions for
enabling zuru mode was:
• Bit 25 is set

• A controller is connected to port 2

• If the game disk ID is between
0x90 and 0x98, zuru mode can
be enabled by plugging in a
second controller, and…

• The second controller controls
all of the debug displays!

0x3C(osAppNMIBuffer)

Bit 26

?

0x4(zuruKeyCheck)

?

0x3C(osAppNMIBuffer)

Bit 25

?

Zuru Mode Activation

0x3C(osAppNMIBuffer)

Bit 26

Game disk ID is 0x99

Instant unlock

0x3C(osAppNMIBuffer)

Bit 25

Game disk ID between 0x90
and 0x98

Unlocked when a controller
is in port 2

zerucheck_key_check

• The last mystery is zuruKeyCheck

• It gets updated by
zerucheck_key_check

• Cross-reference didn’t show up before
because of the way the address is
calculated

• What we want at the end is for
register 5 to hold 0xB
• This will toggle the value of

0x4(zuruKeyCheck), enabling or disabling
zuru mode

• r5 is stored in 0x0(zuruKeyCheck)
• Loaded at the beginning
• Updated at the end

zerucheck_key_check

• Follow the blocks up to the
beginning and find the constraints
• 8040ED74: r5 must be 0xB

• Sets r5 to 0xB

• 8040ED60: r0 must be 0x1000

• 8040EBE8: r5 must be 0xA

• 8040EBE4: r5 must be less than 0x5B

• 8040EBA4: r5 must be greater than
0x7

• 8040EB94: r6 must be 0x1

• 8040EB5C: r0 must not be 0x0

zerucheck_key_check

• The blocks right before the end will update r5 to some number or
reset it to zero based on a comparison

• It’s a state machine
• r5 stores state index and is advanced on correct conditions, or reset to zero

• The condition is a comparison to the value of r0

zerucheck_key_check

• The values of r0 looks like bit flags…
• Where do they come from?

• Function called every frame via callback
function passed to gamepad manager class

• Holding down various buttons on the second
controller changes the value
• Affects 16-bit value at offset 0x2
• So it is checking for certain button combinations

on a controller

• The first thing key check does is load the state

• Second thing is load the previous and current
button press flags

• (new XOR old) AND new leaves only the
changed button press flags

• The input to this function is new button presses
– this is r0

zerucheck_key_check

• Look up button values in N64 SDK
• It’s a cheat combo!

1. Hold L + R triggers and press Z
2. D-UP
3. C-DOWN
4. C-UP
5. D-DOWN
6. D-LEFT
7. C-LEFT
8. C-RIGHT
9. D-RIGHT
10. A + B
11. START

Button Value

A_BUTTON
B_BUTTON
L_TRIG
R_TRIG
Z_TRIG
START_BUTTON
U_JPAD
L_JPAD
R_JPAD
D_JPAD
U_CBUTTONS
L_CBUTTONS
R_CBUTTONS
D_CBUTTONS

0x8000
0x4000
0x0020
0x0010
0x2000
0x1000
0x0800
0x0200
0x0100
0x0400
0x0008
0x0002
0x0001
0x0004

0x3C(osAppNMIBuffer)

Bit 26

?

0x4(zuruKeyCheck)

?

0x3C(osAppNMIBuffer)

Bit 25

?

Zuru Mode Activation

0x3C(osAppNMIBuffer)

Bit 26

Game disk ID is 0x99

Instant unlock

0x3C(osAppNMIBuffer)

Bit 25

Game disk ID between 0x90
and 0x98

Unlocked when a controller
is in port 2

0x4(zuruKeyCheck)

Enter 11-step button combo
on port 2 controller

Toggle unlock with button
combo

Special menus

• Famicom menu

• Map select

• Player select

• Scene selection

Bonus
Translations, localization, development history

Haniwa / Gyroids

Kamakura

• Googling it returns a city

• Look up related message ID in
message table:
• “So what do you think? Isn't this a

great igloo, {{TAIL}}?”

• Originally based on snow hut
festival in Japan
• Igloos are the localized version

Death / Funeral

