
Hacking Amiibo with Software-Defined Radio

James Chambers

@jamchamb_

• Contain an NFC “tag”

• Near Field Communication
(NFC)

• Set of protocols for contactless
power and data transfer between
devices within a few centimeters of
each other

• Amiibo use NTAG215
• Part of the NTAG21x specification,

a specific kind of NFC tag made by
NXP Semiconductors

https://gototags.com/blog/whats-the-difference-nfc-tags-v-nfc-chips/

• Buffer overflow triggered with horse
name, which is set by user and kept
in save file

• Save file edited using crypto keys
obtained from hardware exploit

• Edit save to smash the stack

• Used in software-based attack chain
for installing homebrew software
manager EponAAA

See “Console Hacking 2008: Wii Fail” by Team Twiizers (fail0verflow)

• Like smartphones, modern game
consoles put users in “jail”

• Meant to prevent piracy and
cheating

• Consoles often sold at a loss, in
hopes of profiting from games and
services

• No custom software allowed

Yifan Lu – “The 3DS Cryptosystem”
https://yifan.lu/2016/04/06/the-3ds-cryptosystem/

• How easy would it to be to
clone or spoof them?

• Can the data they store be
used for “save game” style
exploits?

• Could they be used to trigger
an exploit on the Nintendo
Switch?

• What’s the data like?

NFC tag serial number

Character ID

Encrypted data

Settings, signatures, hashes

Settings, signatures, hashes

• How does the crypto system work?

Crypto

Details we do know:

• Amiibo data is encrypted

• Unique keys for each Amiibo

• Can’t copy data from one
Amiibo to another

• AES and HMAC are involved
• Encrypted data is also signed

Crypto

• amiitool by socram8888 can perform encryption and decryption,
but the crypto keys are kept private:

• “Please note that keys used for signing and encryption are
copyright of Nintendo and therefore they can't be shared, and I
won't share post them here, send them using a private message,
or anywhere else.”

• Often, the homebrew/game hacking community does not make
crypto keys public to avoid enabling piracy.

Crypto

• Private online APIs for decrypting/encrypting Amiibo
• Crypto keys stored on server, inaccessible to user

• Need to get an API key from the dev

• Activity on API is monitored

• Operations would be throttled by response time, possible rate
limiting, and server downtime or decommission

• Every payload attempt would require waiting for an API request

Crypto

• Amiibo cheat devices use a
similar model

• Online API performs all operations
that require crypto

• PowerSaves device has API
authentication tied to hardware

• “Reversing Powersaves for Amiibo”
http://blog.ghettoha.xxx/reversing-
powersaves-for-amiibo/

• Cheat device manufacturers
don’t want to reveal the crypto
secrets, they want you to buy
their device

• How can we read, copy, and tamper with the data?

• How can we simulate an Amiibo?

Proxmark 3

• SDR device for RFID and NFC

• Primarily used to research

proximity ID cards

• Open source, reprogrammable

microcontroller and FPGA

• Can be used to simulate a

reader/writer or tag

Proxmark 3
• Has basic ISO 14443A simulation
• Supports initial wakeup,

identification, and selection (anti-
collision)

• Can tell an NFC reader its serial
number. That’s all.

Need to roll our own NTAG21x
simulator.

To read, edit, and simulate Amiibo we need to:

• Make an
NTAG215
simulator for
Proxmark

• Obtain the
Amiibo crypto
keys

• Integrate Amiibo
crypto operations
with Proxmark
simulator

+

• Jailbreaks already existed for
3DS

• New 3DS has built-in
NFC/Amiibo compatibility

• (watch the “Breaking the 3DS” CCC
presentation!)

• Reverse engineering the
software will be much easier

• Can get decrypted game and
service binaries

• Can tamper with processes

• NTR CFW: Custom firmware
for 3DS

• Adds a debugger to the 3DS

• Sadly, breakpoints don’t work

• Limited to peek & poke
• Read and tamper with memory

• View registers at random
moments

• Try to dump and reverse engineer the NFC service to:
• Find the crypto keys

• Fully understand crypto system

• Understand how games, NFC service, and Amiibo interact

• The encrypted or decrypted Amiibo images may be accessible
in dumped memory

• Static analysis of binary

• Wrote a custom homebrew
app that uses the NFC
service:

• Scan for Amiibo

• Read its content

• Request app data, tag info
(can’t request raw dump)

Decrypted Amiibo image

Plaintext 16-bit character strings:
nickname, owner, Mii names

Game/Application data

Amiibo nickname;
Registered owner Mii

Signature, settings,
timestamps, write counter

Signature, serial, character
ID

Application ID, hash

• Loaded up the NFC service
binary in Hopper

• Searched for intelligible
strings

• Immediately found…
something suspicious

• “locked secret” and “unfixed
infos”

• Need to figure out how these bytes are used

• Difficulties with static analysis
• Poor automatic code identification due to the

way the service binary is set up

• No main entry point that calls down to all the
other code

• Series of service call stubs that call isolated
functions

• Broken debugger, tons of unidentified code, disassembler
crashes on Ctrl+F… what can I do?

• Use existing reverse-
engineered NFC service IPC
calls from the homebrew
library to figure out the
locations of related code in the
binary dump

• 0xC8A17620 “Invalid state”
error code appears often
when calling functions at the
wrong time

• Add new features to custom
app to help identify code in the
binary

• Version 1
• Add a bunch of button bindings

to trigger all known IPC calls
• Connect debugger
• Replace “invalid state” error

code with 0xDEADBEEF and call
random functions

• Find where 0xDEADBEEF error
shows up

• Version 2
• Replace the “invalid state” error codes with address of the function that

sets them

• Button mash and find lots more addresses

• Version 3
• Programmatically rewrite select

function prologues to
immediately return address of
function

• Works even if not in invalid state

• Observe function addresses in
error codes

• Navigate down found branch
and select more functions to
rewrite

Check last bit of
ENVINFO

in config memory

Pick developer or
retail key info

HMAC Algorithm

amiitool
Hopper pseudo-code of NFC

service

• Tried to figure out how to use it
with amiitool, but there isn’t
enough data to build a full key file

• Using the content I did have, I
tried searching for the keys
online…

• Found some interesting
notes…

• Found the whole key file…

• It contains a value not in the
NFC service dump; what is it?

• What hasn’t shown up yet?
The 3DS’s dedicated AES
hardware

• Two key components are sent to AES engine
• “keyX” set by bootloader

• “keyY” set by firmware after it’s decrypted

• Setting keyY triggers generation of the “normal” key

• Normal key can be used to perform crypto operations in the
engine, but can’t be read back out

ARM11 ARM9
AES

Engine

• “Key scrambling” algorithm performed by the AES engine was
reversed by derrek, plutoo, smealum; presented in “Breaking
the 3DS” at CCC in 2015

• All normal keys can be derived by applying this algorithm to the
keyX and keyY components

• AES crypto could then be performed without the 3DS hardware,
but before that…

ARM11 ARM9
AES

Engine

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0)

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1)

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

plaintext buffer

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

plaintext buffer

⊕

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

plaintext buffer

⊕

ciphertext

=

A ⊕ 0 = A

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

zeros

⊕

AES Engine
(CTR mode)

Nonce || Counter

Encryption key

Key
scrambler

KeyX

KeyY

Nonce||Counter

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

zeros

⊕

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

=

encrypt(key, nonce ||counter + 0) encrypt(key, nonce ||counter + 1) encrypt(key, nonce ||counter + 2)

“XOR pad”

• A XOR pad can be used to perform CTR mode

encryption and decryption without access to the AES

engine hardware

• Only way to do crypto externally until hardware AES

engine’s key scrambling algorithm was cracked

• Wrote a Python script for trying out a list of different keys from
the hardware keys dump, with the ability to adjust AES-CTR
internals

• Try encrypting zeros with different keys, nonce, and counters
based on NFC service dump values until the known good XOR
pad result is found

• With the following setup, it works:
• The encryption key is the composite NFC service key from AES chip
• The nonce and initial counter values are from the NFC binary
• The counter is in big endian representation during AES-CTR

• Mysterious value is 32 byte XOR pad using NFC-specific key

The Amiibo Crypto system

Amiibo data has two partitions:

1. Tag (“locked secret”)

• NTAG215 serial number

• Character ID

• Unique 32 byte sequence

2. Data (“unfixed infos”)

• Settings, bit flags

• Registered owner Mii data

• Game/application data

The Amiibo Crypto system

1. Generate two sets of AES-CTR parameters and HMAC keys
with a Deterministic Random Bit Generator
• One set per partition

2. Sign each partition with its generated HMAC key

3. Encrypt data partition with AES-CTR using its generated
AES key, nonce, and counter
• Tag is stored plaintext; ignore that set of AES values

4. Rearrange the buffer for storage in NFC tag EEPROM

Reverse the process to decrypt (rearrange buffer, generate keys,
decrypt data partition, check HMACs)

Amiibo
• Write counter
• Serial number
• Unique 32 bytes

NFC Service
• AES parameters
• HMAC

parameters
Partition name

• Partition magic
bytes

3DS AES engine
Encrypt unique 32
bytes

HMAC Deterministic Random Bit Generator

type string || (write counter) magic bytes ||

serial || Encrypted unique 32 bytes

Amiibo unique signing and encryption keys

AES key || AES nonce || AES counter || HMAC key

You got the Amiibo crypto system!
It’s incredibly convoluted!

• Use the Proxmark sniffer and
data sheets to figure out
protocol

• NXP’s NTAG21x data sheet is
public

• Proxmark traffic display already
recognizes many common ISO
14443 and NFC tag commands

• Not always compatible with specific tag
in use; may need changes

Implemented in ISO14443a simulator

Specific to NTAG21x

• Commands to implement:
• READ

• FAST_READ

• WRITE

• GET_VERSION

• PWD_AUTH

• READ_SIG

• Buffer for tag EEPROM contents

• State of the codebase: spaghetti

• A lot of the work is just figuring out how everything is set up
• There’s no developer documentation

• Modular, self-contained NTAG21x logic

• Weld NTAG215 simulator on to ISO 14443a simulator

GET_VERSION

• “The GET_VERSION command has no arguments and replies the version
information for the specific NTAG21x type.”

• NTAG215 info: 00 04 04 02 01 00 11 03 (+CRC-16)

• Add pre-cached response with 16 bit CRC value
• Cyclic Redundancy Check: used for detecting transmission errors

• Pre-caching necessary for low latency commands

• Modulation must be calculated for data bytes before the timeout (usually 5ms)

READ

• Read four pages, beginning at specified page
• A page is a four byte block of data. 16 bytes are returned.
• An NTAG215 has 135 pages (540 bytes total)

• Only used to read the capability container in page 3, so we don’t
need to implement everything (locked pages, rolling over after end of
memory, etc.)

• Biggest hurdle is implementing a memory buffer to store the
EEPROM data

• Get buffer dynamically, calculate CRC-16, and send it back

Tag EEPROM Buffer

• The Proxmark has a “big buffer” with custom malloc

• Undocumented card memory section that can be preserved
while freeing the rest of the memory

• Can be populated from client using USB commands

• Need to set up interface in Lua to handle reading/writing to card
memory buffer

• Update simulator to use card memory buffer when simulating
NTAG215

FAST_READ

• Read from given start page to end page

• Reading all pages at once is allowed, but the 3DS only reads up to 60
pages at a time

• Uses three separate FAST_READ commands to get all memory

• Should send a NAK if request is out of range, but the consoles never do
this

• Still implement some bounds checks to prevent crashes
• Poor signal results in noisy, corrupted commands

• Get buffer, calculate CRC-16, send it back

WRITE

• Write to a single page

• Update 4 bytes in the card memory buffer and send ACK

• Could potentially maintain state to see whether password
unlock was used, but it’s not necessary at the moment

PWD_AUTH

• 32 bit password for unlocking write capability
• One of NTAG21x’s built-in security features

• After 7 failed attempts, pages will be permanently locked

• Respond with 80 80 (+CRC-16) to accept password

• We can simply accept any password for the simulator
• But it would still be interesting to know how passwords are calculated

for more accurate simulation, or for writing to a real Amiibo

PWD_AUTH

• With SDR you can supply an arbitrary serial number and get back the
password when the console attempts to authenticate

• Serials 00000000000000 and 04000000000000 give back AA55AA55…

• It’s based on XORing serial number bytes
• A ⊕ 0 = A; A ⊕ A = 0

Serial / UID Password

04 00 00 00 00 00 00 AA 55 AA 55

04 AA 00 00 00 00 00 00 55 AA 55

04 AA 55 00 00 00 00 00 00 AA 55

04 AA 55 AA 00 00 00 AA 00 00 55

PWD_AUTH

Serial/UID Password

04 FF 00 00 00 00 00 55 55 AA 55

04 00 FF 00 00 00 00 AA AA AA 55

04 00 00 FF 00 00 00 55 55 55 55

04 00 00 00 FF 00 00 AA AA AA AA

04 00 00 00 00 FF 00 AA 55 55 55

04 00 00 00 00 00 FF AA 55 AA AA

PWD_AUTH

Serial/UID Password (XOR AA55AA55)

04 FF 00 00 00 00 00 FF 00 00 00

04 00 FF 00 00 00 00 00 FF 00 00

04 00 00 FF 00 00 00 FF 00 FF 00

04 00 00 00 FF 00 00 00 FF 00 FF

04 00 00 00 00 FF 00 00 00 FF 00

04 00 00 00 00 00 FF 00 00 00 FF

PWD_AUTH

xormask = ‘\xaa\x55\xaa\x55’

for i = 0 to 3:

pwd[i] = xor(uid[i+1], uid[i+3], xormask[i])

Serial/UID Password (XOR AA55AA55)

04 00 00 FF 00 00 00 FF 00 FF 00

04 FF 00 FF 00 00 00 00 00 FF 00

04 FF 00 FF 00 FF 00 00 00 00 00

Amiibo integration

• Proxmark client has a Lua script interface
• Can write and update Lua programs without recompiling client
• Easier to implement, has OOP-ish features

• Wrote Lua wrapper for amiitool and compiled as a library

• Amiibo object in Lua
• Uses amiitool Lua module for packing and unpacking data

• Card memory interface for populating and reading card memory

• Features
• Dump and unpack data from Amiibo
• Load and simulate image
• Save/restore state of card memory

Proxmark3

NTAG215 Simulator

Proxmark client

amiibo.lua

amiitool
Lua
wrapper

Fuzzing
logic

USB

EEPROM
buffer

You got the NTAG215 simulator!
Why does it smell like spaghetti?

• Works fine on the 3DS, but when the Switch finally comes out in
March:

• ECDSA signature of the tag’s serial number is actually checked with the
READ_SIG command

• The Wii U also uses this check, but I hadn’t been testing on it

• The ID card shaped Proxmark HF antenna works very poorly with the Switch

• It’s not very effective.

Official Proxmark3 instructions: rip open cable and wrap it around until it works

• Fail: Signal is not strong enough to read tags or be
picked up by console.

• Got 0.1 V, need around 12V.

• Can’t just buy any “13.56 MHz antenna” and
attach it: tuning must factor in the rest of the
device

• Antenna forms inductor-capacitor circuit with capacitor
on the Proxmark3 board

• Capacitor has a capacitance of 47 picofarads (pF).
Need to adjust this to match the inductance of a
different antenna.

• Current resonant frequency:

• Desired resonant frequency: 13.56 MHz

• Solving for capacitance with desired frequency: need 8.67 pF.

• Need to reduce capacitance without changing Proxmark board.

1

2𝜋 15.9 µ𝐻 × 47 𝑝𝐹
= 5.822 𝑀𝐻𝑧

• Reduce capacitance by adding capacitors in series:

1

1
47𝑝𝐹

+
1
𝐶2
+
1
𝐶3
+⋯+

1
𝐶𝑛

= 8.67𝑝𝐹

• Ideal: add a 10.6 pF capacitor. Hard to order one that specific

though.

• Alternative: get closest approximation with a series of whole-

number capacitance levels available in small quantities online

• 13.9 MHz resonant frequency with spare 10pF capacitor
• Boosts strength from 0.1 to 7V @ 13.56 MHz

• ECDSA signature of tag’s serial number
• Elliptic Curve Digital Signature Algorithm

• Signature proves tag originates from NXP Semiconductors

• Prevents simple counterfeiting
• Can’t make signature for new serial without NXP private key

• Ideal benefit: A valid Amiibo NFC tag must be produced by NXP
and initialized by Nintendo. Amiibo data is bound and unique to
the tag it’s created for.

• No one else can produce or duplicate Amiibo.

• Can’t use an arbitrary serial number
without the ECDSA signature created
with NXP’s private key

• Implications for simulating, fuzzing:
• Some games limit usage by serial

number and time (Breath of the Wild)

• Need to amass a collection of
serial/signature pairs…

• or rewrite with the same serial number
and redo encryption each time

• Can’t simulate with arbitrary serial
number 

• … or can you?

How do cheat devices do it?

• PowerSaves offers “serial randomization” cheat for bypassing
rate limit in Breath of the Wild

• Can only scan an individual Amiibo once per in-game day

• Cheat devices could harvest serial/signature pairs from users’
Amiibo…

• Haven’t verified this, it’s just a possibility

• Amiibo image uploaded to API for each operation

Crypto implementation errors?

• Reusing the same “random number” in ECDSA will compromise
the private key

• See fail0verflow’s PlayStation 3 hacking talk

• Used example SDK code to parse out the nonce parameter
from signature

• They don’t appear to reuse the nonce
• in the small sample I checked

Protocol or application logic flaws?

Verification process:

1. Select tag by ID (anti-collision)

2. Read NXP tag signature

3. Validate selected ID with signature

4. Read entire image from EEPROM

5. Generate keys for image

6. Perform HMAC validation of image

Can you
spot the

bug?

Protocol or application logic flaws?

Verification process:

1. Select tag by ID (anti-collision)

2. Read NXP tag signature

3. Validate selected ID with signature

4. Read entire image from EEPROM

5. Generate keys for image

6. Perform HMAC validation of image

3 and 6 are
not

correlated

Report serial
04 B4 96 EA 21 4B 80

Signature of
04 B4 96 EA 21 4B 80

Image of
04 3D 36 4A B3 49 80

• Supply any known ID and signature pair during selection

• Any Amiibo data can be returned through the read commands
afterwards, regardless of the contained tag ID

• Patched on Switch in 5.0.0; no fix for Wii U

• No crypto keys necessary
• Don’t need to do any crypto rewriting to load an image

• Arbitrary serial number in tag data

• Finish antenna for Switch

• Examine new layer of
encryption added to
application data in games like
Splatoon 2

• Create test harness for
fuzzing on the Switch, 3DS

Get amiimikyu at
https://github.com/nccgroup/proxmark3-amiimicyou

amiitool Lua wrapper at
https://github.com/jamchamb/amiitool

https://github.com/nccgroup/proxmark3-amiimicyou
https://github.com/jamchamb/amiitool

• Jeff Dileo

• Nolan Ray

